const NES_TAG: [u8; 4] = [0x4E, 0x45, 0x53, 0x1A]; const PRG_ROM_PAGE_SIZE: usize = 16384; const CHR_ROM_PAGE_SIZE: usize = 8192; #[derive(Debug, PartialEq)] pub enum Mirroring { Vertical, Horizontal, FourScreen, } /// Contains all information extracted from the NES ROM file pub struct Rom { // Contains the Program ROM which is the main executable pub prg_rom: Vec, // Contains the Character ROM which is used for graphics pub chr_rom: Vec, // Indicates which memory mapper to use pub mapper: u8, // Determines if the background tiles are mirrored across the screen pub screen_mirroring: Mirroring, } impl Rom { pub fn new(raw: &Vec) -> Result { // Check for valid header. Compare the first 4 bytes to NES_TAG // We want to ensure that we get the standard iNES format or else we want to error out. if &raw[0..4] != NES_TAG { return Err("File is not in iNES file format".to_string()); } // Extract the mapper number. The mapper dictates how to interpret the memory layout of the // ROM. If we don't have this, we won't know how tto access the PRG (program) or the CHR // (character) data correctly let mapper = (raw[7] & 0b1111_0000) | (raw[6] >> 4); // Check iNES version. We want iNES 1.0 because iNES 2.0 introduces additional // complexities. let ines_ver = (raw[7] >> 2) & 0b11; if ines_ver != 0 { return Err("NES2.0 format is not supported".to_string()); } // Determine screen mirroring. This will be used by the PPC to correctly render the game // graphics. let four_screen = raw[6] & 0b1000 != 0; let vertical_mirroring = raw[6] & 0b1 != 0; let screen_mirroring = match (four_screen, vertical_mirroring) { (true, _) => Mirroring::FourScreen, (false, true) => Mirroring::Vertical, (false, false) => Mirroring::Horizontal, }; // Calculate PRG and CHR ROM Sizes. The emulator needs to know how much data ot read and // where to the PRG and CHR ROMs start. This directly influences how the emulator // initializes memory. let prg_rom_size = raw[4] as usize * PRG_ROM_PAGE_SIZE; let chr_rom_size = raw[5] as usize * CHR_ROM_PAGE_SIZE; // Check if the ROM includes trainer data and adjust the starting position of the PRG. // Trainer data is included typically with patches or enabling cheats. let skip_trainer = raw[6] & 0b100 != 0; // We need to skip over the trainer data (if included) so that we know where the PRG data // starts. let prg_rom_start = 16 + if skip_trainer { 512 } else { 0 }; let chr_rom_start = prg_rom_start + prg_rom_size; Ok(Rom { prg_rom: raw[prg_rom_start..(prg_rom_start + prg_rom_size)].to_vec(), chr_rom: raw[chr_rom_start..(chr_rom_start + chr_rom_size)].to_vec(), mapper, screen_mirroring, }) } } pub mod test { use super::*; // we're going to simulate the rom file in memory struct TestRom { header: Vec, trainer: Option>, pgp_rom: Vec, chr_rom: Vec, } /// Combines the header, trainer (if any), PRG ROM, and CHR ROM into a complete ROM file. fn create_rom(rom: TestRom) -> Vec { let mut result = Vec::with_capacity( rom.header.len() + rom.trainer.as_ref().map_or(0, |t| t.len()) + rom.pgp_rom.len() + rom.chr_rom.len(), ); result.extend(&rom.header); if let Some(t) = rom.trainer { result.extend(t); } result.extend(&rom.pgp_rom); result.extend(&rom.chr_rom); result } /// Create a test ROM with default settings and passes it to Rom::new pub fn test_rom(program: Vec) -> Rom { let mut pgp_rom_contents = program; pgp_rom_contents.resize(2 * PRG_ROM_PAGE_SIZE, 0); let test_rom = create_rom(TestRom { header: vec![ 0x4E, 0x45, 0x53, 0x1A, 0x02, 0x01, 0x31, 00, 00, 00, 00, 00, 00, 00, 00, 00, ], trainer: None, pgp_rom: pgp_rom_contents, chr_rom: vec![2; 1 * CHR_ROM_PAGE_SIZE], }); Rom::new(&test_rom).unwrap() } /// Test a basic rom with no trainer data #[test] fn test() { // Arrange and create a valid rom let test_rom = create_rom(TestRom { header: vec![ 0x4E, 0x45, 0x53, 0x1A, 0x02, 0x01, 0x31, 00, 00, 00, 00, 00, 00, 00, 00, 00, ], trainer: None, pgp_rom: vec![1; 2 * PRG_ROM_PAGE_SIZE], chr_rom: vec![2; 1 * CHR_ROM_PAGE_SIZE], }); // Parse out the ROM let rom: Rom = Rom::new(&test_rom).unwrap(); assert_eq!( rom.chr_rom, vec!(2; 1 * CHR_ROM_PAGE_SIZE, "CHR ROM data mismatch") ); assert_eq!( rom.prg_rom, vec!(1; 2 * PRG_ROM_PAGE_SIZE, "PRG ROM data mismatch") ); assert_eq!(rom.mapper, 3, "Mapper value mismatch"); assert_eq!( rom.screen_mirroring, Mirroring::Vertical, "Screen mirroring mismatch" ); } /// Parse ROM with trainer data #[test] fn test_with_trainer() { // Create a valid ROM with 512-byte trainer data let test_rom = create_rom(TestRom { header: vec![ 0x4E, 0x45, 0x53, 0x1A, 0x02, 0x01, 0x31 | 0b100, // this is the trainer bit set 00, 00, 00, 00, 00, 00, 00, 00, 00, ], trainer: Some(vec![0; 512]), pgp_rom: vec![1; 2 * PRG_ROM_PAGE_SIZE], chr_rom: vec![2; 1 * CHR_ROM_PAGE_SIZE], }); // Parse the ROM let rom: Rom = Rom::new(&test_rom).unwrap(); assert_eq!( rom.chr_rom, vec!(2; 1 * CHR_ROM_PAGE_SIZE), "CHR ROM data mismatch" ); assert_eq!( rom.prg_rom, vec!(1; 2 * PRG_ROM_PAGE_SIZE), "PRG ROM data mismatch" ); assert_eq!(rom.mapper, 3, "Mapper value mismatch"); assert_eq!( rom.screen_mirroring, Mirroring::Vertical, "Screen mirroring mode mismatch" ); } /// Test invalid NES 2.0 format #[test] fn test_nes2_is_not_supported() { // Create ROM with NES 2.0 version flag let test_rom = create_rom(TestRom { header: vec![ 0x4E, 0x45, 0x53, 0x1A, 0x01, 0x01, 0x31, 0x8, 00, 00, 00, 00, 00, 00, 00, 00, ], trainer: None, pgp_rom: vec![1; 1 * PRG_ROM_PAGE_SIZE], chr_rom: vec![2; 1 * CHR_ROM_PAGE_SIZE], }); // Try to parse the ROM let rom = Rom::new(&test_rom); match rom { Result::Ok(_) => assert!(false, "should not load rom"), Result::Err(str) => assert_eq!(str, "NES2.0 format is not supported"), } } }