Browse Source

broken commit, didn't finish. Working on addressingModes

master
Stephanie Gredell 12 months ago
parent
commit
19ea93f58c
  1. 125
      cpu.rs

125
cpu.rs

@ -1,5 +1,33 @@ @@ -1,5 +1,33 @@
// This is all new to me so it's heavily commented so we can understand what is happening.
#[derive(Debug)]
#[allow(non_camel_case_types)]
// AddressingMode is a mehtod used by a CPU to determine where the operand (data or memory
// location) for an instruction comes from. It basically defines how the CPU finds the data it
// needs to execute a given instruction.
pub enum AddressingMode {
// Operand is provided directly as part of the instruction
Immediate,
//Operand is located in the zero page (memory address 0x00 to 0xFF)
ZeroPage,
// Operand is in the zero page, with an offet from the X register
ZeroPage_X,
// Operand is in the zero page, with an offet from the Y register
ZeroPage_Y,
// Operand is at the full 16bit address (0x0000 to 0xFFFF)
Absolute,
// Operand is at an absolute address, with an offset from the X register
Absolute_X,
// Operand is at an absolute address, with an offset from the Y register
Absolute_Y,
// Operand is at an address stored in a zero-page address plus an X offset
Indirect_X,
// Operand is at an address stored in a zero-page address plus an Y offset
Indirect_Y,
// No addressing mode (used for instructions that don't require an operand like NOP)
NoneAddressing,
}
pub struct CPU {
// the accumulator register is a specific register used for arithmetic and logic operations
// the cpu instruction loads a value into the accumulator register and then updates certain
@ -25,6 +53,11 @@ pub struct CPU { @@ -25,6 +53,11 @@ pub struct CPU {
// X register has one special function. It can be used to copy a stack pointer or change it's
// value.
pub register_x: u8,
pub register_y: u8,
// this creates an array with size of 0xFFFF and initializes all elements to 0 (see below in t
// he new function). 0xFFFF is hexadecimal for 65535 in decimal. This defines the size of the
// array with 65535 elements, the typical size for a 6502 CPU system.
memory: [u8; 0xFFFF],
}
impl CPU {
@ -34,8 +67,80 @@ impl CPU { @@ -34,8 +67,80 @@ impl CPU {
status: 0,
program_counter: 0,
register_x: 0,
register_y: 0,
memory: [0; 0xFFFF],
}
}
fn get_operand_address(&self, mode: &AddressingMode) -> u16 {
match mode {
AddressingMode::Immediate => self.program_counter,
AddressingMode::ZeroPage => self.mem_read(self.program_counter) as u16,
AddressingMode::Absolute => self.mem_read_u16(self.program_counter),
AddressingMode::ZeroPage_X => {
let pos = self.mem_read(self.program_counter);
let addr = pos.wrapping_add(self.register_x) as u16;
addr;
}
AddressingMode::ZeroPage_Y => {
let pos = self.mem_read(self.program_counter);
let addr = pos.wrapping_add(self.register_y) as u16;
addr
}
}
}
fn mem_read(&self, addr: u16) -> u8 {
self.memory[addr as usize]
}
fn mem_write(&mut self, addr: u16, data: u8) {
self.memory[addr as usize] = data;
}
// combines two consecutives bytes in memory into a single 16 bit value
fn mem_read_u16(&mut self, pos: u16) -> u16 {
// read the low byte (pos)
let lo = self.mem_read(pos) as u16;
// read the high byte (pos + 1)
let hi = self.mem_read(pos + 1) as u16;
// combine the bytes. Shelf the high byte 8 bits to the left, effectively moving it into
// the upper 8 bits of a 16-bit value. This will combine to a single 16 bit value.
(hi << 8) | (lo as u16)
}
// split a 16-bit number into 2 8-bit pieces
fn mem_write_u16(&mut self, pos: u16, data: u16) {
// take the top half of the 16 bit number
let hi = (data >> 8) as u8;
// take the bottom half of the 16 bit number
let lo = (data & 0xff) as u8;
// store low byte in the first compartment of memory (pos)
self.mem_write(pos, lo);
// store the high byte in the next compartment (pos + 1)
self.mem_write(pos + 1, hi)
}
pub fn load_and_run(&mut self, program: Vec<u8>) {
self.load(program);
self.reset();
self.run();
}
pub fn reset(&mut self) {
self.register_a = 0;
self.register_x = 0;
self.status = 0;
self.program_counter = self.mem_read_u16(0xFFFC);
}
// load the program code into memroy starting at address 0x8000. 0x8000 .. 0xFFFF is reserved
// from program ROM and we can assume that the instructions should start somewhere here.
pub fn load(&mut self, program: Vec<u8>) {
self.memory[0x8000..(0x8000 + program.len())].copy_from_slice(&program[..]);
self.mem_write(0xFFFC, 0x8000);
}
// LDA stands for Load Accumulator. It loads a value into the accumulator register. It affects
// the Zero Flag and Negative Flag.
@ -67,6 +172,8 @@ impl CPU { @@ -67,6 +172,8 @@ impl CPU {
}
}
// INX stands for Increment Index Register X - increase the value of the X register
// by one and update specific processor flags based on the result.
fn inx(&mut self) {
self.register_x = self.register_x.wrapping_add(1);
self.update_zero_and_negative_flags(self.register_x);
@ -79,15 +186,13 @@ impl CPU { @@ -79,15 +186,13 @@ impl CPU {
// - Decode instruction
// - Execute the instruction
// - Repeat
pub fn interpret(&mut self, program: Vec<u8>) {
self.program_counter = 0;
pub fn run(&mut self) {
// We need an infinite loop to continuously fetch instructions from the program array. We
// use the program_counter to keep track fo the current instruction.
loop {
// set the opscode to the current byte in the program at the address indicated by
// program counter
let opscode = program[self.program_counter as usize];
let opscode = self.mem_read(self.program_counter);
// we increment program counterto point to the next byte
self.program_counter += 1;
@ -117,6 +222,8 @@ impl CPU { @@ -117,6 +222,8 @@ impl CPU {
// implement the 0xAA opcode which corresponds to the TAX (transfer acculumater to
// X register)
0xAA => self.tax(),
// INX stands for Increment Index Register X - increase the value of the X register
// by one and update specific processor flags based on the result.
0xe8 => self.inx(),
0x00 => return,
_ => todo!(),
@ -132,7 +239,7 @@ mod tests { @@ -132,7 +239,7 @@ mod tests {
#[test]
fn test_lda_sets_register_a() {
let mut cpu = CPU::new();
cpu.interpret(vec![0xa9, 0x05, 0x00]);
cpu.load_and_run(vec![0xa9, 0x05, 0x00]);
assert_eq!(cpu.register_a, 0x05);
assert!(cpu.status & 0b0000_0010 == 0b00);
assert!(cpu.status & 0b1000_0000 == 0);
@ -141,7 +248,7 @@ mod tests { @@ -141,7 +248,7 @@ mod tests {
#[test]
fn test_0xa9_lda_zero_flag() {
let mut cpu = CPU::new();
cpu.interpret(vec![0xa9, 0x00, 0x00]);
cpu.load_and_run(vec![0xa9, 0x00, 0x00]);
assert!(cpu.status & 0b0000_0010 == 0b10);
}
@ -149,7 +256,7 @@ mod tests { @@ -149,7 +256,7 @@ mod tests {
fn test_0xaa_tax_move_to_a_to_x() {
let mut cpu = CPU::new();
cpu.register_a = 10;
cpu.interpret(vec![0xaa, 0x00]);
cpu.load_and_run(vec![0xaa, 0x00]);
assert_eq!(cpu.register_x, 10)
}
@ -157,7 +264,7 @@ mod tests { @@ -157,7 +264,7 @@ mod tests {
#[test]
fn test_5_ops_working_together() {
let mut cpu = CPU::new();
cpu.interpret(vec![0xa9, 0xc0, 0xaa, 0xe8, 0x00]);
cpu.load_and_run(vec![0xa9, 0xc0, 0xaa, 0xe8, 0x00]);
assert_eq!(cpu.register_x, 0xc1)
}
@ -166,7 +273,7 @@ mod tests { @@ -166,7 +273,7 @@ mod tests {
fn test_inx_overflow() {
let mut cpu = CPU::new();
cpu.register_x = 0xff;
cpu.interpret(vec![0xe8, 0xe8, 0x00]);
cpu.load_and_run(vec![0xe8, 0xe8, 0x00]);
assert_eq!(cpu.register_x, 1)
}

Loading…
Cancel
Save