Browse Source

added bitflag dependency and added more functions. Cargo check passes but tests fail. Not complete.

master
Stephanie Gredell 12 months ago
parent
commit
1a53063fdb
  1. 1
      Cargo.lock
  2. 1
      Cargo.toml
  3. 173
      cpu.rs

1
Cargo.lock generated

@ -905,6 +905,7 @@ checksum = "2b15c43186be67a4fd63bee50d0303afffcef381492ebe2c5d87f324e1b8815c"
name = "rom-emulator" name = "rom-emulator"
version = "0.1.0" version = "0.1.0"
dependencies = [ dependencies = [
"bitflags",
"env_logger", "env_logger",
"futures", "futures",
"log", "log",

1
Cargo.toml

@ -4,6 +4,7 @@ version = "0.1.0"
edition = "2021" edition = "2021"
[dependencies] [dependencies]
bitflags = "2.8.0"
env_logger = "0.11.6" env_logger = "0.11.6"
futures = "0.3.31" futures = "0.3.31"
log = "0.4.25" log = "0.4.25"

173
cpu.rs

@ -1,8 +1,36 @@
// This is all new to me so it's heavily commented so we can understand what is happening. // This is all new to me so it's heavily commented so we can understand what is happening.
use bitflags::bitflags;
bitflags! {
pub struct CpuFlags: u8 {
// Represents whether the last operation caused a carry or borrow
const CARRY = 0b00000001;
// Set if the result of the last operation was zero
const ZERO = 0b00000010;
// Disables interrupts when set
const INTERRUPT_DISABLE = 0b00000100;
// Enables binary-coded decimal arithmetic
const DECIMAL_MODE = 0b00001000;
// Indicates the CPU is handling in interupt
const BREAK = 0b00010000;
// A duplicate "break" flag, as both bit 4 and 5 are set by the BRK instruction
// Bit 5 is not explicitly used on NES
const BREAK2 = 0b00100000;
// Set if an arithmetic operation caused an overflow (adding two positive numbers results
// in a negative value)
const OVERFLOW = 0b01000000;
// Indicates whether the result of the last operation was negative - determined by the MSB
// of the result
const NEGATIVE = 0b10000000;
}
}
const STACK: u16 = 0x0100;
const STACK_RESET: u8 = 0xfd;
#[derive(Debug)] #[derive(Debug)]
#[allow(non_camel_case_types)] #[allow(non_camel_case_types)]
// AddressingMode is a mehtod used by a CPU to determine where the operand (data or memory // AddressingMode is a method used by a CPU to determine where the operand (data or memory
// location) for an instruction comes from. It basically defines how the CPU finds the data it // location) for an instruction comes from. It basically defines how the CPU finds the data it
// needs to execute a given instruction. // needs to execute a given instruction.
// //
@ -19,7 +47,7 @@ pub enum AddressingMode {
ZeroPage_X, ZeroPage_X,
// Operand is in the zero page, with an offet from the Y register // Operand is in the zero page, with an offet from the Y register
ZeroPage_Y, ZeroPage_Y,
// Operand is at the full 16bit address (0x0000 to 0xFFFF) // Operand is at the full 16-bit address (0x0000 to 0xFFFF)
Absolute, Absolute,
// Operand is at an absolute address, with an offset from the X register // Operand is at an absolute address, with an offset from the X register
Absolute_X, Absolute_X,
@ -49,7 +77,7 @@ pub struct CPU {
// Negative flag (N) - indicates whether the result of the most recent operation is negative // Negative flag (N) - indicates whether the result of the most recent operation is negative
// - Bit 7 of the status register (most significant bit is Bit 7 because it's zero based) // - Bit 7 of the status register (most significant bit is Bit 7 because it's zero based)
// - Set if the most significant bit of register_a is 1, cleared otherwise // - Set if the most significant bit of register_a is 1, cleared otherwise
pub status: u8, pub status: CpuFlags,
// track our current position in the program // track our current position in the program
pub program_counter: u16, pub program_counter: u16,
// most commonly used to hold counters or offsets for accessing memory. The value can be loaded // most commonly used to hold counters or offsets for accessing memory. The value can be loaded
@ -108,7 +136,7 @@ impl CPU {
pub fn new() -> Self { pub fn new() -> Self {
CPU { CPU {
register_a: 0, register_a: 0,
status: 0, status: CpuFlags::from_bits_truncate(0b100100),
program_counter: 0, program_counter: 0,
register_x: 0, register_x: 0,
register_y: 0, register_y: 0,
@ -221,29 +249,31 @@ impl CPU {
} }
} }
/// Road the program, reset the state of the cpu and then run the program.
pub fn load_and_run(&mut self, program: Vec<u8>) { pub fn load_and_run(&mut self, program: Vec<u8>) {
self.load(program); self.load(program);
self.reset(); self.reset();
self.run(); self.run();
} }
/// Reset the state of the CPU
pub fn reset(&mut self) { pub fn reset(&mut self) {
self.register_a = 0; self.register_a = 0;
self.register_x = 0; self.register_x = 0;
self.status = 0; self.status = CpuFlags::from_bits_truncate(0b100100);
self.program_counter = self.mem_read_u16(0xFFFC); self.program_counter = self.mem_read_u16(0xFFFC);
} }
// load the program code into memroy starting at address 0x8000. 0x8000 .. 0xFFFF is reserved /// Load the program code into memroy starting at address 0x8000. 0x8000 .. 0xFFFF is reserved
// from program ROM and we can assume that the instructions should start somewhere here. /// from program ROM and we can assume that the instructions should start somewhere here.
pub fn load(&mut self, program: Vec<u8>) { pub fn load(&mut self, program: Vec<u8>) {
self.memory[0x8000..(0x8000 + program.len())].copy_from_slice(&program[..]); self.memory[0x8000..(0x8000 + program.len())].copy_from_slice(&program[..]);
self.mem_write_u16(0xFFFC, 0x8000); self.mem_write_u16(0xFFFC, 0x8000);
} }
// LDA stands for Load Accumulator. It loads a value into the accumulator register. It affects /// LDA stands for Load Accumulator. It loads a value into the accumulator register. It affects
// the Zero Flag and Negative Flag. /// the Zero Flag and Negative Flag.
fn lda(&mut self, mode: &AddressingMode) { fn lda(&mut self, mode: &AddressingMode) {
let addr = self.get_operand_address(mode); let addr = self.get_operand_address(mode);
let value = self.mem_read(addr); let value = self.mem_read(addr);
@ -252,40 +282,141 @@ impl CPU {
self.update_zero_and_negative_flags(self.register_a); self.update_zero_and_negative_flags(self.register_a);
} }
/// TAX instruction copies the value from teh accumulator register (register_a) into the x
/// register. The way this works is that the CPU takes the current value in the A register,
/// copies it to the X register, updates the Zero Flag and Negative Flag in the status register.
///
/// The Zero Flag is set if the value is copied to the X register is 0
/// The Negative Flag is set if the most significant bit of the vlaue (Bit 7) is 1
///
/// In the TAX instruction, we don't need any arguments because it always stransfers data from A
/// to X.
fn tax(&mut self) { fn tax(&mut self) {
self.register_x = self.register_a; self.register_x = self.register_a;
self.update_zero_and_negative_flags(self.register_x); self.update_zero_and_negative_flags(self.register_x);
} }
/// STA stands for Store Accumulator. This instruction takes the value in the accumulator
/// register (register_a) and stores it in a specified memory location.
///
/// How this works is that the CPU reads the value currently in the accumulator (register_a)
/// The CPu then writes this value to the specified memory address.
fn sta(&mut self, mode: &AddressingMode) { fn sta(&mut self, mode: &AddressingMode) {
let addr = self.get_operand_address(mode); let addr = self.get_operand_address(mode);
self.mem_write(addr, self.register_a); self.mem_write(addr, self.register_a);
} }
/// Perform a bitwise AND operation betwen the value in register_a and a value fetched from
/// memory (determined by the addressing mode)
///
/// The result is stored back in register_a. This is useful for isolating specific bits in the
/// accumulator.
fn and(&mut self, mode: &AddressingMode) {
let addr = self.get_operand_address(mode);
let data = self.mem_read(addr);
self.set_register_a(data & self.register_a);
}
/// This is used to update the status register flags based on the operation. It updates the Zero
/// Flag and the Negative Flag.
///
/// This will ensure that the CPU's status register reflects whether the result is zerl (update
/// the Zero Flag) and if the result is negative (update the Negative Flag)
fn update_zero_and_negative_flags(&mut self, result: u8) { fn update_zero_and_negative_flags(&mut self, result: u8) {
// update the status register
if result == 0 { if result == 0 {
// 0b000_0010 represents a number where only the second bit (bit 1) is set self.status.insert(CpuFlags::ZERO)
// to 1 and all other bits are 0
self.status = self.status | 0b000_0010;
} else { } else {
// 0b1111_1101 represents a number where only bit 1 is 0 and the rest are 1 self.status.remove(CpuFlags::ZERO);
self.status = self.status & 0b1111_1101;
} }
if result & 0b1000_000 != 0 { if result & 0b1000_000 != 0 {
self.status = self.status | 0b100_0000; self.status.insert(CpuFlags::NEGATIVE)
} else { } else {
self.status = self.status & 0b0111_1111; self.status.remove(CpuFlags::NEGATIVE);
} }
} }
// INX stands for Increment Index Register X - increase the value of the X register /// INX stands for Increment Index Register X - increase the value of the X register
// by one and update specific processor flags based on the result. /// by one and update specific processor flags based on the result.
fn inx(&mut self) { fn inx(&mut self) {
self.register_x = self.register_x.wrapping_add(1); self.register_x = self.register_x.wrapping_add(1);
self.update_zero_and_negative_flags(self.register_x); self.update_zero_and_negative_flags(self.register_x);
} }
/// Simulate the ADC (Add with Carry) instruction. It adds a value (data) to the accumulator
/// register (register_a), optionally including the carry flag and updates the status falgs
/// accordingly.
fn add_to_register_a(&mut self, data: u8) {
// Add register_a, data and carry flag togehter. All values are cast to u16 to prevent
// overflow during the calculation (since the result might exceed 8 bits).
let sum = self.register_a as u16
+ data as u16
+ (if self.status.contains(CpuFlags::CARRY) {
1
} else {
0
}) as u16;
let carry = sum > 0xff;
// the carry flag is set if the result exceeds 255 (0xFF), meaning the additon produced a
// value that requires more than 8 bits to store.
if carry {
// this happens if the sum = 0x101
self.status.insert(CpuFlags::CARRY);
} else {
// this happens if sum = 0xFE
self.status.remove(CpuFlags::CARRY);
}
// reduce the sum down to a u8 which will discord any overflow beyond 8 bits
let result = sum as u8;
// update the overflow flag to be set if there is a signed arithmetic overflow.
// A signed arithmetic overflow occurs when adding two signed numbers produces a result
// that is outside th range of a signed 8-bit value (-128 to 127)
//
// `data ^ result` checks if the sign of data is different from the sign of result
// `result ^ self.register_a` checks if the sign of result is different from the sign of
// register_a.
// `& 0x80` isolates the most significant bit whcih indicates the sign in signed arithmetic.
if (data ^ result) & (result ^ self.register_a) & 0x80 != 0 {
self.status.insert(CpuFlags::OVERFLOW)
} else {
self.status.remove(CpuFlags::OVERFLOW);
}
// store the final 8-bit result back in the accumulator
self.set_register_a(result);
}
/// This will set the value of the A register (register_A)
fn set_register_a(&mut self, value: u8) {
self.register_a = value;
self.update_zero_and_negative_flags(self.register_a);
}
/// SBC stands for Subtract with Borrow. It is the counter to ADC (Add with Carry) instruction
/// and performs subtraction while considering the Carry Flag. This works with unsigned binary
/// numbers or two's complement signed numbers.
///
/// The Carry flag represents the absence of a borrow.
/// The Overflow flag is set if the result goes outside the range of a signed 8-bit value
/// The Negative flag and Zero flag are updated based on the result
fn sbc(&mut self, mode: &AddressingMode) {
let addr = self.get_operand_address(mode);
let data = self.mem_read(addr);
self.add_to_register_a(((data as i8).wrapping_neg().wrapping_sub(1)) as u8);
}
/// ADC stands for Add with Carry
fn adc(&mut self, mode: &AddressingMode) {
let addr = self.get_operand_address(mode);
let value = self.mem_read(addr);
self.add_to_register_a(value);
}
// The interpret method takes in mutalbe reference to self as we know we will need to modify // The interpret method takes in mutalbe reference to self as we know we will need to modify
// register_a during execution // register_a during execution
// //
@ -304,7 +435,7 @@ impl CPU {
self.program_counter += 1; self.program_counter += 1;
match opscode { match opscode {
// this will implement LDA (0xA9) opcode. 0xA9 is the LDA Immediate instruction in // This will implement LDA (0xA9) opcode. 0xA9 is the LDA Immediate instruction in
// the 6502 CPU. // the 6502 CPU.
// //
// 0x42 tells the CPU to execute a specific operation: LDA Immediate. An opscode is // 0x42 tells the CPU to execute a specific operation: LDA Immediate. An opscode is
@ -314,7 +445,7 @@ impl CPU {
// Immediate value refers to the constant value that is directly embedded in the // Immediate value refers to the constant value that is directly embedded in the
// instruction itself, rather than being fetched from memory or calculated // instruction itself, rather than being fetched from memory or calculated
// directly. // directly.
0xA9 => { 0xA9 | 0xa5 | 0xb4 | 0xad | 0xbd | 0xb9 | 0xa1 | 0xb1 => {
self.lda(&AddressingMode::Immediate); self.lda(&AddressingMode::Immediate);
self.program_counter += 1; self.program_counter += 1;
} }

Loading…
Cancel
Save