Browse Source

write more tests, write more functions and comments

master
Stephanie Gredell 12 months ago
parent
commit
1000d95d43
  1. 110
      cpu.rs

110
cpu.rs

@ -37,6 +37,41 @@ impl CPU { @@ -37,6 +37,41 @@ impl CPU {
}
}
// LDA stands for Load Accumulator. It loads a value into the accumulator register. It affects
// the Zero Flag and Negative Flag.
fn lda(&mut self, value: u8) {
self.register_a = value;
self.update_zero_and_negative_flags(self.register_a);
}
fn tax(&mut self) {
self.register_x = self.register_a;
self.update_zero_and_negative_flags(self.register_x);
}
fn update_zero_and_negative_flags(&mut self, result: u8) {
// update the status register
if result == 0 {
// 0b000_0010 represents a number where only the second bit (bit 1) is set
// to 1 and all other bits are 0
self.status = self.status | 0b000_0010;
} else {
// 0b1111_1101 represents a number where only bit 1 is 0 and the rest are 1
self.status = self.status & 0b1111_1101;
}
if result & 0b1000_000 != 0 {
self.status = self.status | 0b100_0000;
} else {
self.status = self.status & 0b0111_1111;
}
}
fn inx(&mut self) {
self.register_x = self.register_x.wrapping_add(1);
self.update_zero_and_negative_flags(self.register_x);
}
// The interpret method takes in mutalbe reference to self as we know we will need to modify
// register_a during execution
//
@ -59,44 +94,31 @@ impl CPU { @@ -59,44 +94,31 @@ impl CPU {
match opscode {
// this will implement LDA (0xA9) opcode. 0xA9 is the LDA Immediate instruction in
// the 6502 CPU.
//
// 0x42 tells the CPU to execute a specific operation: LDA Immediate. An opscode is
// a command for the CPU, instructing it what to do next. Essentially, this means
// "Load the immediate value from the next memory location into the accumulator"
//
// Immediate value refers to the constant valuethat is directly embedded in the
// instruction itself, rather than being fetched from memory or calculated
// directly.
0xA9 => {
// fetch the next byte in program. This byte is the immediate value to load
// into the accumulator (register_a)
let param = program[self.program_counter as usize];
// Increment program counter to point to the next instruction after the
// parameter
// parameter. The program counter must always point to the next instruction to
// be executed.
self.program_counter += 1;
// store the fetch paramenter in register_a
self.register_a = param;
// now we wil update the status register
if self.register_a == 0 {
// 0b000_0010 represents a number where only the second bit (bit 1) is set
// to 1 and all other bits are 0
self.status = self.status | 0b000_0010;
} else {
// 0b1111_1101 represents a number where only bit 1 is 0 and the rest are 1
self.status = self.status & 0b1111_1101;
}
}
0xAA => {
self.register_x = self.register_a;
if self.register_x == 0 {
self.status = self.status | 0b000_0010;
} else {
self.status = self.status & 0b1111_1101;
}
if self.register_x & 0b1000_0000 != 0 {
self.status = self.status | 0b1000_0000;
} else {
self.status = self.status & 0b0111_1111;
}
}
0x00 => {
return;
// store the fetch parameter in register_a - handling the actual loading of the
// value into the accumulator and updates the CPU flags.
self.lda(param);
}
// implement the 0xAA opcode which corresponds to the TAX (transfer acculumater to
// X register)
0xAA => self.tax(),
0xe8 => self.inx(),
0x00 => return,
_ => todo!(),
}
}
@ -122,4 +144,30 @@ mod tests { @@ -122,4 +144,30 @@ mod tests {
cpu.interpret(vec![0xa9, 0x00, 0x00]);
assert!(cpu.status & 0b0000_0010 == 0b10);
}
#[test]
fn test_0xaa_tax_move_to_a_to_x() {
let mut cpu = CPU::new();
cpu.register_a = 10;
cpu.interpret(vec![0xaa, 0x00]);
assert_eq!(cpu.register_x, 10)
}
#[test]
fn test_5_ops_working_together() {
let mut cpu = CPU::new();
cpu.interpret(vec![0xa9, 0xc0, 0xaa, 0xe8, 0x00]);
assert_eq!(cpu.register_x, 0xc1)
}
#[test]
fn test_inx_overflow() {
let mut cpu = CPU::new();
cpu.register_x = 0xff;
cpu.interpret(vec![0xe8, 0xe8, 0x00]);
assert_eq!(cpu.register_x, 1)
}
}

Loading…
Cancel
Save